An interior point potential reduction method for constrained equations

نویسندگان

  • Tao Wang
  • Renato D. C. Monteiro
  • Jong-Shi Pang
چکیده

We study the problem of solving a constrained system of nonlinear equations by a combination of the classical damped Newton method for (unconstrained) smooth equations and the recent interior point potential reduction methods for linear programs, linear and nonlin-ear complementarity problems. In general, constrained equations provide a uniied formulation for many mathematical programming problems, including complementarity problems of various kinds and the Karush-Kuhn-Tucker systems of variational inequalities and nonlinear programs. Combining ideas from the damped Newton and interior point methods, we present an iterative algorithm for solving a constrained system of equations and investigate its convergence properties. Specialization of the algorithm and its convergence analysis to complementarity problems of various kinds and the Karush-Kuhn-Tucker systems of variational inequalities are discussed in detail. We also report the computational results of the implementation of the algorithm for solving several classes of convex programs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ABS Solution of equations of second kind and application to the primal-dual interior point method for linear programming

 Abstract  We consider an application of the ABS procedure to the linear systems arising from the primal-dual interior point methods where Newton method is used to compute path to the solution. When approaching the solution the linear system, which has the form of normal equations of the second kind, becomes more and more ill conditioned. We show how the use of the Huang algorithm in the ABS cl...

متن کامل

A Comparison of Interior Point Methods and a Moreau-Yosida Based Active Set Strategy for Constrained Optimal Control Problems

In this note we focus on a comparison of two eecient methods to solve quadratic constrained optimal control problems governed by elliptic partial-diierential equations. One of them is based on a generalized Moreau-Yosida formulation of the constrained optimal control problem which results in an active set strategy involving primal and dual variables. The second approach is based on interior poi...

متن کامل

On the Fundamental Role of Interior - PointMethodology

Recently primal-dual interior-point methodology has proven to be an eeective tool in linear programming applications and is now being extended, with great enthusiasm to general nonlinear programming applications. The primary purpose of this current study is to develop and promote the belief that since Newton's method is a tool for square nonlinear systems of equations, the fundamental role of i...

متن کامل

Implementation of an Interior Point Multidimensional Filter Line Search Method for Constrained Optimization

Here we present a primal-dual interior point multidimensional filter line search method for nonlinear programming. The filter relies on a multidimensional feasibility measure enforcing every constraint violation to zero. To prevent convergence to feasible nonoptimal points a sufficient reduction criterion is also imposed on the barrier function. The evaluation of the method is until now made on...

متن کامل

Q - Superlinear Convergence O F Primal - Dual Interior Point Quasi - Newton Methods F O R Constrained Optimization

This paper analyzes local convergence rates of primal-dual interior point methods for general nonlinearly constrained optimization problems. For this purpose, we first discuss modified Newton methods and modified quasi-Newton methods for solving a nonlinear system of equations, and show local and Qquadratic/Q-superlinear convergence of these methods. These methods are characterized by a perturb...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Program.

دوره 74  شماره 

صفحات  -

تاریخ انتشار 1996